Research

Math meets medicine

We believe our research can help bring affordable world-class medical expertise to every patient around the world.

Core research

Email Chat Think Streamline Icon: https://streamlinehq.com email-chat-think

Model reasoning

General purpose LLMs are powerful at solving math exams but fail when they are tasked with complicated real-world healthcare reasoning.

Learning to reason from a complex healthcare history, the most recent medical research, and laboratory results takes a specialized reasoning agent with embedded knowledge of millions of related healthcare cases.

Business Product Scale Streamline Icon: https://streamlinehq.com business-product-scale

Policy optimization

Policies define the protocol followed by a machine learning model. Policies are learned from human guidance and general purpose LLM policies are defined by non-healthcare-trained individuals.

Optimizing policies through feedback from healthcare professionals enable learning the protocol from the best in class.

Interface Essential Setting Slide Streamline Icon: https://streamlinehq.com interface-essential-setting-slide

Alignment and interoperability

AI systems are inherently bad at knowing when they don’t know. Building interpretability into the AI allows healthcare professionals to understand the reasoning process and locate the source of its output.

Alignment AI models are tasked with interpreting the output of other AI models at scale, flagging inconsistencies before they harm.

Latest publications

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
arXiv
2025
GIM: Improved Interpretability for Large Language Models
Joakim Edin, Róbert Csordás, Tuukka Ruotsalo, Zhengxuan Wu, Maria Maistro, Jing Huang, Lars Maaløe
arXiv
2025
A Text-To-Text Alignment Algorithm for Better Evaluation of Modern Speech Recognition Systems
Lasse Borgholt, Jakob Havtorn, Christian Igel, Lars Maaløe, Zheng-Hua Tan
EMNLP
2025
Code Like Humans: A Multi-Agent Solution for Medical Coding
Andreas Motzfeldt, Joakim Edin, Casper L. Christensen, Christian Hardmeier, Lars Maaløe, Anna Rogers
MDPI
2025
Voice as a Health Indicator: The Use of Sound Analysis and AI for Monitoring Respiratory Function
Nicki Lentz-Nielsen, Lars Maaløe, Pascal Madeleine, Stig Nikolaj Blomberg
arXiv
2025
FactsR: A Safer Method for Producing High Quality Healthcare Documentation
Victor Petrén Bach Hansen, Lasse Krogsbøll, Jonas Lyngsø, Mathias Baltzersen, Andreas Motzfeldt, Kevin Pelgrims, Lars Maaløe
arXiv
2024
Normalized AOPC: Fixing Misleading Faithfulness Metrics for Feature Attribution Explainability
Andreas G. Motzfeldt, Casper L. Christensen, Joakim Edin, Lars Maaløe, Maria Maistro, Tuukka Ruotsalo
EMNLP
2024
An Unsupervised Approach to Achieve Supervised-Level Explainability in Healthcare Records
Jakob D. Havtorn, Joakim Edin, Lars Maaløe, Lasse Borgholt, Maria Maistro, Tuukka Ruotsalo
npj Digital Medicine
2023
A Retrospective Study on Machine Learning-Assisted Stroke Recognition for Medical Helpline Calls
Christina Kruuse, Hanne Christensen, Helle Collatz Christensen, Jakob D. Havtorn, Jonathan Wenstrup, Lars Maaløe, Lasse Borgholt, Michael R. Sayre, Stig N.F. Blomberg
ICCV
2023
MSViT: Dynamic Mixed-Scale Tokenization for Vision Transformers
Amélie Royer, Babak Ehteshami Bejnordi, Jakob D. Havtorn, Tijmen Blankevoort
SIGIR
2023
Automated medical coding on MIMIC-III and MIMIC-IV: A Critical Review and Replicability Study
Alexander Junge, Jakob D. Havtorn, Joakim Edin, Lars Maaløe, Lasse Borgholt, Maria Maistro, Tuukka Ruotsalo
JSTSP SAS
2022
Self-Supervised Speech Representation Learning: A Review
Abdelrahman Mohamed, Christian Igel, Hung-yi Lee, Jakob D. Havtorn, Joakim Edin, Karen Livescu, Katrin Kirchhoff, Lars Maaløe, Lasse Borgholt, Shang-Wen Li, Shinji Watanabe, Tara N. Sainath
AISTATS
2022
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin, Hugo Schmutz, Hugo Senetaire, Jakob D. Havtorn, Jes Frellsen, Lars Maaløe, Pierre-Alexandre Mattei, Søren Hauberg
AAAI
2022
A Brief Overview of Unsupervised Neural Speech Representation Learning
Christian Igel, Jakob D. Havtorn, Joakim Edin, Lars Maaløe, Lasse Borgholt
ICLR
2022
Benchmarking Generative Latent Variable Models for Speech
Jakob D. Havtorn, Jes Frellsen, Lars Maaløe, Lasse Borgholt, Søren Hauberg
ICASSP
2021
On scaling contrastive representations for low-resource speech recognition
Christian Igel, Jakob D. Havtorn, Lars Maaløe, Lasse Borgholt, Tycho MS Tax
arXiv
2021
Do We Still Need Automatic Speech Recognition for Spoken Language Understanding?
Lasse Borgholt, Jakob Drachmann Havtorn, Mostafa Abdou, Joakim Edin, Lars Maaløe, Anders Søgaard, Christian Igel
INTERSPEECH
2021
Do end-to-end speech recognition models care about context?
Lasse Borgholt, Jakob Drachmann Havtorn, Željko Agić, Anders Søgaard, Lars Maaløe, Christian Igel
ICML
2021
Hierarchical VAEs Know What They Don't Know
Jakob D. Havtorn, Jes Frellsen, Søren Hauberg, Lars Maaløe
ACL
2020
MultiQT: Multimodal Learning for Real-Time Question Tracking in Speech
Jakob D. Havtorn, Jan Latko, Joakim Edin, Lasse Borgholt, Lars Maaløe, Lorenzo Belgrano, Nicolai F. Jacobsen, Regitze Sdun, Željko Agić
NeurIPS
2019
BIVA: A very deep hierarchy of latent variables for generative modeling
Lars Maaløe, Marco Fraccaro, Valentin Liévin, Ole Winther
NeurIPS
2018
On the Inductive Bias of Word-Character-Level Multi-Task Learning for Speech Recognition
Jan Kremer, Lasse Borgholt, Lars Maaløe
ICLR
2017
Utilizing Domain Knowledge in End-to-End Audio Processing
Tycho Max Sylvester Tax, Jose Luis Diez Antich, Hendrik Purwins, Lars Maaløe
NeurIPS
2017
Semi-supervised generation with cluster-aware generative models
Lars Maaløe, Marco Fraccaro, Ole Winther
ICML
2016
Auxiliary deep generative models
Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther
NeurIPS
2016
Ladder Variational Autoencoders
Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, Ole Winther
arXiv
2015
Recurrent spatial transformer networks
Søren Kaae Sønderby, Casper Kaae Sønderby, Lars Maaløe, Ole Winther

Join our research team

We are always looking for brilliant minds dedicated to innovating in healthcare, as well as impact research collaborations. Get in touch if you want to work together.